From : Michigan Technological University's Turning Information Center
INTRODUCTION
What is turning?
Turning is the machining operation that produces cylindrical parts. In its basic form, it can be defined as the machining of an external surface:- with the workpiece rotating,
- with a single-point cutting tool, and
- with the cutting tool feeding parallel to the axis of the workpiece and at a distance that will remove the outer surface of the work.
Even though a single-point tool is specified, this does not exclude multiple-tool setups, which are often employed in turning. In such setups, each tool operates independently as a single-point cutter.
View a typical turning operation. This movie is from the MIT-NMIS Machine Shop Tutorial.
Adjustable cutting factors in turning
The three primary factors in any basic turning operation are speed, feed, and depth of cut. Other factors such as kind of material and type of tool have a large influence, of course, but these three are the ones the operator can change by adjusting the controls, right at the machine.Speed, always refers to the spindle and the workpiece. When it is stated in revolutions per minute(rpm) it tells their rotating speed. But the important figure for a particular turning operation is the surface speed, or the speed at which the workpeece material is moving past the cutting tool. It is simply the product of the rotating speed times the circumference (in feet) of the workpiece before the cut is started. It is expressed in surface feet per minute (sfpm), and it refers only to the workpiece. Every different diameter on a workpiece will have a different cutting speed, even though the rotating speed remains the same.
Feed, always refers to the cutting tool, and it is the rate at which the tool advances along its cutting path. On most power-fed lathes, the feed rate is directly related to the spindle speed and is expressed in inches (of tool advance) per revolution ( of the spindle), or ipr. The figure, by the way, is usually much less than an inch and is shown as decimal amount.
Depth of Cut, is practically self explanatory. It is the thickness of the layer being removed from the workpiece or the distance from the uncut surface of the work to the cut surface, expressed in inches. It is important to note, though, that the diameter of the workpiece is reduced by two times the depth of cut because this layer is being removed from both sides of the work.
LATHE RELATED OPERATIONS
Threading. Lathe provided the first method for cutting threads by machines. Although most threads are now produced by other methods, lathes still provide the most versatile and fundamentally simple method. Consequently, they often are used for cutting threads on special workpieces where the configuration or nonstandard size does not permit them to be made by less costly methods. There are two basic requirements for thread cutting. An accurately shaped and properly mounted tool is needed because thread cutting is a form-cutting operation. The resulting thread profile is determined by the shape of the tool and its position relative to the workpiece. The second by requirement is that the tool must move longitudinally in a specific relationship to the rotation of the workpiece, because this determines the lead of the thread. This requirement is met through the use of the lead screw and the split unit, which provide positive motion of the carriage relative to the rotation of the spindle.
CUTTING TOOLS FOR LATHES
The back rake angle affects the ability of the tool to shear the work material and form the chip. It can be positive or negative. Positive rake angles reduce the cutting forces resulting in smaller deflections of the workpiece, tool holder, and machine. If the back rake angle is too large, the strength of the tool is reduced as well as its capacity to conduct heat. In machining hard work materials, the back rake angle must be small, even negative for carbide and diamond tools. The higher the hardness, the smaller the back rake angle. For high-speed steels, back rake angle is normally chosen in the positive range. There are two basic requirements for thread cutting. An accurately shaped and properly mounted tool is needed because thread cutting is a form-cutting operation. The resulting thread profile is determined by the shape of the tool and its position relative to the workpiece. The second by requirement is that the tool must move longitudinally in a specific relationship to the rotation of the workpiece, because this determines the lead of the thread. This requirement is met through the use of the lead screw and the split unit, which provide positive motion of the carriage relative to the rotation of the spindle.
CUTTING TOOLS FOR LATHES
The back rake angle affects the ability of the tool to shear the work material and form the chip. It can be positive or negative. Positive rake angles reduce the cutting forces resulting in smaller deflections of the workpiece, tool holder, and machine. If the back rake angle is too large, the strength of the tool is reduced as well as its capacity to conduct heat. In machining hard work materials, the back rake angle must be small, even negative for carbide and diamond tools. The higher the hardness, the smaller the back rake angle. For high-speed steels, back rake angle is normally chosen in the positive range. There are two basic requirements for thread cutting. An accurately shaped and properly mounted tool is needed because thread cutting is a form-cutting operation. The resulting thread profile is determined by the shape of the tool and its position relative to the workpiece. The second by requirement is that the tool must move longitudinally in a specific relationship to the rotation of the workpiece, because this determines the lead of the thread. This requirement is met through the use of the lead screw and the split unit, which provide positive motion of the carriage relative to the rotation of the spindle.
CUTTING TOOLS FOR LATHES
The back rake angle affects the ability of the tool to shear the work material and form the chip. It can be positive or negative. Positive rake angles reduce the cutting forces resulting in smaller deflections of the workpiece, tool holder, and machine. If the back rake angle is too large, the strength of the tool is reduced as well as its capacity to conduct heat. In machining hard work materials, the back rake angle must be small, even negative for carbide and diamond tools. The higher the hardness, the smaller the back rake angle. For high-speed steels, back rake angle is normally chosen in the positive range.
The tool bit should be clamped in the tool holder with minimum overhang. Otherwise, tool chatter and a poor surface finish may result. In the use of carbide, ceramic, or coated carbides for mass production work, throwaway inserts are used; these can be purchased in great variety of shapes, geometrics (nose radius, tool angle, and groove geometry), and sizes.
TURNING MACHINES
They are heavy duty machine tools and have power drive for all tool movements. They commonly range in size from 12 to 24 inches swing and from 24 to 48 inches center distance, but swings up to 50 inches and center distances up to 12 feet are not uncommon. Many engine lathes are equipped with chip pans and built-in coolant circulating system.
Through these basic features of a turret lathe, a number of tools can be set on the machine and then quickly be brought successively into working position so that a complete part can be machined without the necessity for further adjusting, changing tools, or making measurements.
TURNING RESEARCH AT MICHIGAN TECH
Here at Michigan Technological University, turning research is being conducted in three areas:
Our Equipment:
More information can be found at Precision Machining
1 comments:
Valve actuators are really needed for complex tasks in the high power market.If the load requires accurate positioning, the electric actuators as well as the valve actuators has the advantage among others.That is why,to familiarize yourself in this kind of industrial application , knowing how an automation works is a wisely action and will positively keep us in track.
Post a Comment